// // "$Id$" // // Image drawing code for the Fast Light Tool Kit (FLTK). // // Copyright 1998-2015 by Bill Spitzak and others. // // This library is free software. Distribution and use rights are outlined in // the file "COPYING" which should have been included with this file. If this // file is missing or damaged, see the license at: // // http://www.fltk.org/COPYING.php // // Please report all bugs and problems on the following page: // // http://www.fltk.org/str.php // #include "config_lib.h" #include #include #include #include #include #include #include #include "flstring.h" void fl_restore_clip(); // from fl_rect.cxx // // Base image class... // Fl_RGB_Scaling Fl_Image::RGB_scaling_ = FL_RGB_SCALING_NEAREST; /** The constructor creates an empty image with the specified width, height, and depth. The width and height are in pixels. The depth is 0 for bitmaps, 1 for pixmap (colormap) images, and 1 to 4 for color images. */ Fl_Image::Fl_Image(int W, int H, int D) : w_(W), h_(H), d_(D), ld_(0), count_(0), data_(0L) {} /** The destructor is a virtual method that frees all memory used by the image. */ Fl_Image::~Fl_Image() { } /** If the image has been cached for display, delete the cache data. This allows you to change the data used for the image and then redraw it without recreating an image object. */ void Fl_Image::uncache() { } void Fl_Image::draw(int XP, int YP, int, int, int, int) { draw_empty(XP, YP); } /** The protected method draw_empty() draws a box with an X in it. It can be used to draw any image that lacks image data. */ void Fl_Image::draw_empty(int X, int Y) { if (w() > 0 && h() > 0) { fl_color(FL_FOREGROUND_COLOR); fl_rect(X, Y, w(), h()); fl_line(X, Y, X + w() - 1, Y + h() - 1); fl_line(X, Y + h() - 1, X + w() - 1, Y); } } /** The copy() method creates a copy of the specified image. If the width and height are provided, the image is resized to the specified size. The image should be deleted (or in the case of Fl_Shared_Image, released) when you are done with it. */ Fl_Image *Fl_Image::copy(int W, int H) { return new Fl_Image(W, H, d()); } /** The color_average() method averages the colors in the image with the FLTK color value c. The i argument specifies the amount of the original image to combine with the color, so a value of 1.0 results in no color blend, and a value of 0.0 results in a constant image of the specified color. An internal copy is made of the original image before changes are applied, to avoid modifying the original image. */ void Fl_Image::color_average(Fl_Color, float) { } /** The desaturate() method converts an image to grayscale. If the image contains an alpha channel (depth = 4), the alpha channel is preserved. An internal copy is made of the original image before changes are applied, to avoid modifying the original image. */ void Fl_Image::desaturate() { } /** The label() methods are an obsolete way to set the image attribute of a widget or menu item. Use the image() or deimage() methods of the Fl_Widget and Fl_Menu_Item classes instead. */ void Fl_Image::label(Fl_Widget* widget) { widget->image(this); } /** The label() methods are an obsolete way to set the image attribute of a widget or menu item. Use the image() or deimage() methods of the Fl_Widget and Fl_Menu_Item classes instead. */ void Fl_Image::label(Fl_Menu_Item* m) { Fl::set_labeltype(_FL_IMAGE_LABEL, labeltype, measure); m->label(_FL_IMAGE_LABEL, (const char*)this); } /** Returns a value that is not 0 if there is currently no image available. Example use: \code [..] Fl_Box box(X,Y,W,H); Fl_JPEG_Image jpg("/tmp/foo.jpg"); switch ( jpg.fail() ) { case Fl_Image::ERR_NO_IMAGE: case Fl_Image::ERR_FILE_ACCESS: fl_alert("/tmp/foo.jpg: %s", strerror(errno)); // shows actual os error to user exit(1); case Fl_Image::ERR_FORMAT: fl_alert("/tmp/foo.jpg: couldn't decode image"); exit(1); } box.image(jpg); [..] \endcode \return ERR_NO_IMAGE if no image was found \return ERR_FILE_ACCESS if there was a file access related error (errno should be set) \return ERR_FORMAT if image decoding failed. */ int Fl_Image::fail() { // if no image exists, ld_ may contain a simple error code if ( (w_<=0) || (h_<=0) || (d_<=0) ) { if (ld_==0) return ERR_NO_IMAGE; else return ld_; } return 0; } void Fl_Image::labeltype(const Fl_Label *lo, // I - Label int lx, // I - X position int ly, // I - Y position int lw, // I - Width of label int lh, // I - Height of label Fl_Align la) { // I - Alignment Fl_Image *img; // Image pointer int cx, cy; // Image position img = (Fl_Image *)(lo->value); if (la & FL_ALIGN_LEFT) cx = 0; else if (la & FL_ALIGN_RIGHT) cx = img->w() - lw; else cx = (img->w() - lw) / 2; if (la & FL_ALIGN_TOP) cy = 0; else if (la & FL_ALIGN_BOTTOM) cy = img->h() - lh; else cy = (img->h() - lh) / 2; fl_color((Fl_Color)lo->color); img->draw(lx, ly, lw, lh, cx, cy); } void Fl_Image::measure(const Fl_Label *lo, // I - Label int &lw, // O - Width of image int &lh) { // O - Height of image Fl_Image *img; // Image pointer img = (Fl_Image *)(lo->value); lw = img->w(); lh = img->h(); } /** Sets the RGB image scaling method used for copy(int, int). Applies to all RGB images, defaults to FL_RGB_SCALING_NEAREST. */ void Fl_Image::RGB_scaling(Fl_RGB_Scaling method) { RGB_scaling_ = method; } /** Returns the currently used RGB image scaling method. */ Fl_RGB_Scaling Fl_Image::RGB_scaling() { return RGB_scaling_; } // // RGB image class... // size_t Fl_RGB_Image::max_size_ = ~((size_t)0); int fl_convert_pixmap(const char*const* cdata, uchar* out, Fl_Color bg); /** The constructor creates a new image from the specified data. \param[in] bits The image data array. \param[in] W The width of the image in pixels \param[in] H The height of the image in pixels \param[in] D The image depth, or 'number of channels'. Default=3
If D=1, each uchar in bits[] is a grayscale pixel value.
If D=2, each uchar pair in bits[] is a grayscale + alpha pixel value.
If D=3, each uchar triplet in bits[] is an R/G/B pixel value
If D=4, each uchar quad in bits[] is an R/G/B/A pixel value. \param[in] LD Line data size (default=0).
Line data is extra data that is included after each line of color image data and is normally not present. \see Fl_Image::data(), Fl_Image::w(), Fl_Image::h(), Fl_Image::d(), Fl_Image::ld() */ Fl_RGB_Image::Fl_RGB_Image(const uchar *bits, int W, int H, int D, int LD) : Fl_Image(W,H,D), array(bits), alloc_array(0), id_(0), mask_(0) { data((const char **)&array, 1); ld(LD); } /** The constructor creates a new RGBA image from the specified Fl_Pixmap. The RGBA image is built fully opaque except for the transparent area of the pixmap that is assigned the \p bg color with full transparency */ Fl_RGB_Image::Fl_RGB_Image(const Fl_Pixmap *pxm, Fl_Color bg): Fl_Image(pxm->w(), pxm->h(), 4), id_(0), mask_(0) { array = new uchar[w() * h() * d()]; alloc_array = 1; fl_convert_pixmap(pxm->data(), (uchar*)array, bg); data((const char **)&array, 1); } /** The destructor frees all memory and server resources that are used by the image. */ Fl_RGB_Image::~Fl_RGB_Image() { uncache(); if (alloc_array) delete[] (uchar *)array; } void Fl_RGB_Image::uncache() { Fl_Display_Device::display_device()->driver()->uncache(this, id_, mask_); } Fl_Image *Fl_RGB_Image::copy(int W, int H) { Fl_RGB_Image *new_image; // New RGB image uchar *new_array; // New array for image data // Optimize the simple copy where the width and height are the same, // or when we are copying an empty image... if ((W == w() && H == h()) || !w() || !h() || !d() || !array) { if (array) { // Make a copy of the image data and return a new Fl_RGB_Image... new_array = new uchar[w() * h() * d()]; if (ld() && ld()!=w()*d()) { const uchar *src = array; uchar *dst = new_array; int dy, dh = h(), wd = w()*d(), wld = ld(); for (dy=0; dyalloc_array = 1; return new_image; } else { return new Fl_RGB_Image(array, w(), h(), d(), ld()); } } if (W <= 0 || H <= 0) return 0; // OK, need to resize the image data; allocate memory and uchar *new_ptr; // Pointer into new array const uchar *old_ptr; // Pointer into old array int c, // Channel number sy, // Source coordinate dx, dy, // Destination coordinates xerr, yerr, // X & Y errors xmod, ymod, // X & Y moduli xstep, ystep, // X & Y step increments line_d; // stride from line to line // Figure out Bresenheim step/modulus values... xmod = w() % W; xstep = (w() / W) * d(); ymod = h() % H; ystep = h() / H; line_d = ld() ? ld() : w() * d(); // Allocate memory for the new image... new_array = new uchar [W * H * d()]; new_image = new Fl_RGB_Image(new_array, W, H, d()); new_image->alloc_array = 1; if (Fl_Image::RGB_scaling() == FL_RGB_SCALING_NEAREST) { // Scale the image using a nearest-neighbor algorithm... for (dy = H, sy = 0, yerr = H, new_ptr = new_array; dy > 0; dy --) { for (dx = W, xerr = W, old_ptr = array + sy * line_d; dx > 0; dx --) { for (c = 0; c < d(); c ++) *new_ptr++ = old_ptr[c]; old_ptr += xstep; xerr -= xmod; if (xerr <= 0) { xerr += W; old_ptr += d(); } } sy += ystep; yerr -= ymod; if (yerr <= 0) { yerr += H; sy ++; } } } else { // Bilinear scaling (FL_RGB_SCALING_BILINEAR) const float xscale = (w() - 1) / (float) W; const float yscale = (h() - 1) / (float) H; for (dy = 0; dy < H; dy++) { float oldy = dy * yscale; if (oldy >= h()) oldy = (float)(h() - 1); const float yfract = oldy - (unsigned) oldy; for (dx = 0; dx < W; dx++) { new_ptr = new_array + dy * W * d() + dx * d(); float oldx = dx * xscale; if (oldx >= w()) oldx = (float)(w() - 1); const float xfract = oldx - (unsigned) oldx; const unsigned leftx = (unsigned)oldx; const unsigned lefty = (unsigned)oldy; const unsigned rightx = (unsigned)(oldx + 1 >= w() ? oldx : oldx + 1); const unsigned righty = (unsigned)oldy; const unsigned dleftx = (unsigned)oldx; const unsigned dlefty = (unsigned)(oldy + 1 >= h() ? oldy : oldy + 1); const unsigned drightx = (unsigned)rightx; const unsigned drighty = (unsigned)dlefty; uchar left[4], right[4], downleft[4], downright[4]; memcpy(left, array + lefty * line_d + leftx * d(), d()); memcpy(right, array + righty * line_d + rightx * d(), d()); memcpy(downleft, array + dlefty * line_d + dleftx * d(), d()); memcpy(downright, array + drighty * line_d + drightx * d(), d()); int i; if (d() == 4) { for (i = 0; i < 3; i++) { left[i] = (uchar)(left[i] * left[3] / 255.0f); right[i] = (uchar)(right[i] * right[3] / 255.0f); downleft[i] = (uchar)(downleft[i] * downleft[3] / 255.0f); downright[i] = (uchar)(downright[i] * downright[3] / 255.0f); } } const float leftf = 1 - xfract; const float rightf = xfract; const float upf = 1 - yfract; const float downf = yfract; for (i = 0; i < d(); i++) { new_ptr[i] = (left[i] * leftf + right[i] * rightf) * upf + (downleft[i] * leftf + downright[i] * rightf) * downf; } if (d() == 4 && new_ptr[3]) { for (i = 0; i < 3; i++) { new_ptr[i] /= new_ptr[3] / 255.0f; } } } } } return new_image; } void Fl_RGB_Image::color_average(Fl_Color c, float i) { // Don't average an empty image... if (!w() || !h() || !d() || !array) return; // Delete any existing pixmap/mask objects... uncache(); // Allocate memory as needed... uchar *new_array, *new_ptr; if (!alloc_array) new_array = new uchar[h() * w() * d()]; else new_array = (uchar *)array; // Get the color to blend with... uchar r, g, b; unsigned ia, ir, ig, ib; Fl::get_color(c, r, g, b); if (i < 0.0f) i = 0.0f; else if (i > 1.0f) i = 1.0f; ia = (unsigned)(256 * i); ir = r * (256 - ia); ig = g * (256 - ia); ib = b * (256 - ia); // Update the image data to do the blend... const uchar *old_ptr; int x, y; int line_i = ld() ? ld() - (w()*d()) : 0; // increment from line end to beginning of next line if (d() < 3) { ig = (r * 31 + g * 61 + b * 8) / 100 * (256 - ia); for (new_ptr = new_array, old_ptr = array, y = 0; y < h(); y ++, old_ptr += line_i) for (x = 0; x < w(); x ++) { *new_ptr++ = (*old_ptr++ * ia + ig) >> 8; if (d() > 1) *new_ptr++ = *old_ptr++; } } else { for (new_ptr = new_array, old_ptr = array, y = 0; y < h(); y ++, old_ptr += line_i) for (x = 0; x < w(); x ++) { *new_ptr++ = (*old_ptr++ * ia + ir) >> 8; *new_ptr++ = (*old_ptr++ * ia + ig) >> 8; *new_ptr++ = (*old_ptr++ * ia + ib) >> 8; if (d() > 3) *new_ptr++ = *old_ptr++; } } // Set the new pointers/values as needed... if (!alloc_array) { array = new_array; alloc_array = 1; ld(0); } } void Fl_RGB_Image::desaturate() { // Don't desaturate an empty image... if (!w() || !h() || !d() || !array) return; // Can only desaturate color images... if (d() < 3) return; // Delete any existing pixmap/mask objects... uncache(); // Allocate memory for a grayscale image... uchar *new_array, *new_ptr; int new_d; new_d = d() - 2; new_array = new uchar[h() * w() * new_d]; // Copy the image data, converting to grayscale... const uchar *old_ptr; int x, y; int line_i = ld() ? ld() - (w()*d()) : 0; // increment from line end to beginning of next line for (new_ptr = new_array, old_ptr = array, y = 0; y < h(); y ++, old_ptr += line_i) for (x = 0; x < w(); x ++, old_ptr += d()) { *new_ptr++ = (uchar)((31 * old_ptr[0] + 61 * old_ptr[1] + 8 * old_ptr[2]) / 100); if (d() > 3) *new_ptr++ = old_ptr[3]; } // Free the old array as needed, and then set the new pointers/values... if (alloc_array) delete[] (uchar *)array; array = new_array; alloc_array = 1; ld(0); d(new_d); } void Fl_RGB_Image::draw(int XP, int YP, int WP, int HP, int cx, int cy) { fl_graphics_driver->draw(this, XP, YP, WP, HP, cx, cy); } void Fl_RGB_Image::label(Fl_Widget* widget) { widget->image(this); } void Fl_RGB_Image::label(Fl_Menu_Item* m) { Fl::set_labeltype(_FL_IMAGE_LABEL, labeltype, measure); m->label(_FL_IMAGE_LABEL, (const char*)this); } // // End of "$Id$". //