// // Windows image drawing code for the Fast Light Tool Kit (FLTK). // // Copyright 1998-2020 by Bill Spitzak and others. // // This library is free software. Distribution and use rights are outlined in // the file "COPYING" which should have been included with this file. If this // file is missing or damaged, see the license at: // // https://www.fltk.org/COPYING.php // // Please see the following page on how to report bugs and issues: // // https://www.fltk.org/bugs.php // // I hope a simple and portable method of drawing color and monochrome // images. To keep this simple, only a single storage type is // supported: 8 bit unsigned data, byte order RGB, and pixels are // stored packed into rows with the origin at the top-left. It is // possible to alter the size of pixels with the "delta" argument, to // add alpha or other information per pixel. It is also possible to // change the origin and direction of the image data by messing with // the "delta" and "linedelta", making them negative, though this may // defeat some of the shortcuts in translating the image for X. // Unbelievably (since it conflicts with how most PC software works) // Micro$oft picked a bottom-up and BGR storage format for their // DIB images. I'm pretty certain there is a way around this, but // I can't find any other than the brute-force method of drawing // each line as a separate image. This may also need to be done // if the delta is any amount other than 1, 3, or 4. //////////////////////////////////////////////////////////////// #include #include "Fl_GDI_Graphics_Driver.H" #include "../WinAPI/Fl_WinAPI_System_Driver.H" #include #include #include #include #define MAXBUFFER 0x40000 // 256k void fl_release_dc(HWND, HDC); // from Fl_win32.cxx #if USE_COLORMAP // error-diffusion dither into the FLTK colormap static void dither(uchar* to, const uchar* from, int w, int delta) { static int ri, gi, bi, dir; int r=ri, g=gi, b=bi; int d, td; if (dir) { dir = 0; from = from+(w-1)*delta; to = to+(w-1); d = -delta; td = -1; } else { dir = 1; d = delta; td = 1; } for (; w--; from += d, to += td) { r += from[0]; if (r < 0) r = 0; else if (r>255) r = 255; int rr = r*FL_NUM_RED/256; r -= rr*255/(FL_NUM_RED-1); g += from[1]; if (g < 0) g = 0; else if (g>255) g = 255; int gg = g*FL_NUM_GREEN/256; g -= gg*255/(FL_NUM_GREEN-1); b += from[2]; if (b < 0) b = 0; else if (b>255) b = 255; int bb = b*FL_NUM_BLUE/256; b -= bb*255/(FL_NUM_BLUE-1); *to = uchar(FL_COLOR_CUBE+(bb*FL_NUM_RED+rr)*FL_NUM_GREEN+gg); } ri = r; gi = g; bi = b; } // error-diffusion dither into the FLTK colormap static void monodither(uchar* to, const uchar* from, int w, int delta) { static int ri,dir; int r=ri; int d, td; if (dir) { dir = 0; from = from+(w-1)*delta; to = to+(w-1); d = -delta; td = -1; } else { dir = 1; d = delta; td = 1; } for (; w--; from += d, to += td) { r += *from; if (r < 0) r = 0; else if (r>255) r = 255; int rr = r*FL_NUM_GRAY/256; r -= rr*255/(FL_NUM_GRAY-1); *to = uchar(FL_GRAY_RAMP+rr); } ri = r; } #endif // USE_COLORMAP static int fl_abs(int v) { return v<0 ? -v : v; } static void innards(const uchar *buf, int X, int Y, int W, int H, int delta, int linedelta, int depth, Fl_Draw_Image_Cb cb, void* userdata, HDC gc) { char indexed = 0; #if USE_COLORMAP indexed = (fl_palette != 0); #endif if (depth==0) depth = 3; if (indexed || !fl_can_do_alpha_blending()) depth = (depth-1)|1; if (!linedelta) linedelta = W*fl_abs(delta); int x = 0, y = 0, w = 0, h = 0; fl_clip_box(X, Y, W, H, x, y, w, h); if (w<=0 || h<=0) return; if (buf) buf += (x-X)*delta + (y-Y)*linedelta; static U32 bmibuffer[256+12]; BITMAPINFO &bmi = *((BITMAPINFO*)bmibuffer); if (!bmi.bmiHeader.biSize) { bmi.bmiHeader.biSize = sizeof(bmi)-4; // does it use this to determine type? bmi.bmiHeader.biPlanes = 1; bmi.bmiHeader.biCompression = BI_RGB; bmi.bmiHeader.biXPelsPerMeter = 0; bmi.bmiHeader.biYPelsPerMeter = 0; bmi.bmiHeader.biClrUsed = 0; bmi.bmiHeader.biClrImportant = 0; } #if USE_COLORMAP if (indexed) { for (short i=0; i<256; i++) { *((short*)(bmi.bmiColors)+i) = i; } } else #endif if (depth<3) { RGBQUAD *bmi_colors = &bmi.bmiColors[0]; // suppress warning (STR #3199) for (int i=0; i<256; i++) { bmi_colors[i].rgbBlue = (uchar)i; // bmi.bmiColors[i]... bmi_colors[i].rgbGreen = (uchar)i; bmi_colors[i].rgbRed = (uchar)i; bmi_colors[i].rgbReserved = (uchar)0; // must be zero } } bmi.bmiHeader.biWidth = w; #if USE_COLORMAP bmi.bmiHeader.biBitCount = indexed ? 8 : depth*8; int pixelsize = indexed ? 1 : depth; #else bmi.bmiHeader.biBitCount = depth*8; int pixelsize = depth; #endif if (depth==2) { // special case: gray with alpha bmi.bmiHeader.biBitCount = 32; pixelsize = 4; } int linesize = (pixelsize*w+3)&~3; static U32* buffer; static long buffer_size; int blocking = h; {int size = linesize*h; // when printing, don't limit buffer size not to get a crash in StretchDIBits if (size > MAXBUFFER && !fl_graphics_driver->has_feature(Fl_Graphics_Driver::PRINTER)) { size = MAXBUFFER; blocking = MAXBUFFER/linesize; } if (size > buffer_size) { delete[] buffer; buffer_size = size; buffer = new U32[(size+3)/4]; }} bmi.bmiHeader.biHeight = blocking; static U32* line_buffer; if (!buf) { int size = W*delta; static int line_buf_size; if (size > line_buf_size) { delete[] line_buffer; line_buf_size = size; line_buffer = new U32[(size+3)/4]; } } for (int j=0; j>8; to[0] = gray; to[1] = gray; to[2] = gray; to[3] = a; } break; case 3: for (i=w; i--; from += delta, to += 3) { uchar r = from[0]; to[0] = from[2]; to[1] = from[1]; to[2] = r; } break; case 4: for (i=w; i--; from += delta, to += 4) { uchar a = from[3]; uchar r = from[0]; to[0] = (from[2]*a)>>8; to[1] = (from[1]*a)>>8; to[2] = (r*a)>>8; to[3] = from[3]; } break; } } } if (fl_graphics_driver->has_feature(Fl_Graphics_Driver::PRINTER)) { // if print context, device and logical units are not equal, so SetDIBitsToDevice // does not do the expected job, whereas StretchDIBits does it. StretchDIBits(gc, x, y+j-k, w, k, 0, 0, w, k, (LPSTR)((uchar*)buffer+(blocking-k)*linesize), &bmi, #if USE_COLORMAP indexed ? DIB_PAL_COLORS : DIB_RGB_COLORS #else DIB_RGB_COLORS #endif , SRCCOPY ); delete[] buffer; buffer = NULL; buffer_size = 0; } else { SetDIBitsToDevice(gc, x, y+j-k, w, k, 0, 0, 0, k, (LPSTR)((uchar*)buffer+(blocking-k)*linesize), &bmi, #if USE_COLORMAP indexed ? DIB_PAL_COLORS : DIB_RGB_COLORS #else DIB_RGB_COLORS #endif ); } } } void Fl_GDI_Graphics_Driver::draw_image_unscaled(const uchar* buf, int x, int y, int w, int h, int d, int l){ if (fl_abs(d)&FL_IMAGE_WITH_ALPHA) { d ^= FL_IMAGE_WITH_ALPHA; innards(buf,x,y,w,h,d,l,fl_abs(d),0,0, gc_); } else { innards(buf,x,y,w,h,d,l,(d<3&&d>-3),0,0, gc_); } } void Fl_GDI_Graphics_Driver::draw_image_unscaled(Fl_Draw_Image_Cb cb, void* data, int x, int y, int w, int h,int d) { if (fl_abs(d)&FL_IMAGE_WITH_ALPHA) { d ^= FL_IMAGE_WITH_ALPHA; innards(0,x,y,w,h,d,0,(d<3&&d>-3),cb,data, gc_); } else { innards(0,x,y,w,h,d,0,(d<3&&d>-3),cb,data, gc_); } } void Fl_GDI_Graphics_Driver::draw_image_mono_unscaled(const uchar* buf, int x, int y, int w, int h, int d, int l){ if (fl_abs(d)&FL_IMAGE_WITH_ALPHA) { d ^= FL_IMAGE_WITH_ALPHA; innards(buf,x,y,w,h,d,l,1,0,0, gc_); } else { innards(buf,x,y,w,h,d,l,1,0,0, gc_); } } void Fl_GDI_Graphics_Driver::draw_image_mono_unscaled(Fl_Draw_Image_Cb cb, void* data, int x, int y, int w, int h,int d) { if (fl_abs(d)&FL_IMAGE_WITH_ALPHA) { d ^= FL_IMAGE_WITH_ALPHA; innards(0,x,y,w,h,d,0,1,cb,data, gc_); } else { innards(0,x,y,w,h,d,0,1,cb,data, gc_); } } #if USE_COLORMAP void Fl_GDI_Graphics_Driver::colored_rectf(int x, int y, int w, int h, uchar r, uchar g, uchar b) { // use the error diffusion dithering code to produce a much nicer block: if (fl_palette) { uchar c[3]; c[0] = r; c[1] = g; c[2] = b; innards(c, floor(x), floor(y), floor(x + w) - floor(x), floor(y + h) - floor(y), 0,0,0,0,0, (HDC)gc()); return; } Fl_Graphics_Driver::colored_rectf(x, y, w, h, r, g, b); } #endif // Create an N-bit bitmap for masking... HBITMAP Fl_GDI_Graphics_Driver::create_bitmask(int w, int h, const uchar *data) { // this won't work when the user changes display mode during run or // has two screens with differnet depths HBITMAP bm; static uchar hiNibble[16] = { 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0 }; static uchar loNibble[16] = { 0x00, 0x08, 0x04, 0x0c, 0x02, 0x0a, 0x06, 0x0e, 0x01, 0x09, 0x05, 0x0d, 0x03, 0x0b, 0x07, 0x0f }; int np = GetDeviceCaps(gc_, PLANES); //: was always one on sample machines int bpp = GetDeviceCaps(gc_, BITSPIXEL);//: 1,4,8,16,24,32 and more odd stuff? int Bpr = (bpp*w+7)/8; //: bytes per row int pad = Bpr&1, w1 = (w+7)/8, shr = ((w-1)&7)+1; if (bpp==4) shr = (shr+1)/2; uchar *newarray = new uchar[(Bpr+pad)*h]; uchar *dst = newarray; const uchar *src = data; for (int i=0; i0; j--) { uchar b = *src++; if (bpp==1) { *dst++ = (uchar)( hiNibble[b&15] ) | ( loNibble[(b>>4)&15] ); } else if (bpp==4) { for (int k=(j==1)?shr:4; k>0; k--) { *dst++ = (uchar)("\377\360\017\000"[b&3]); b = b >> 2; } } else { for (int k=(j==1)?shr:8; k>0; k--) { if (b&1) { *dst++=0; if (bpp>8) *dst++=0; if (bpp>16) *dst++=0; if (bpp>24) *dst++=0; } else { *dst++=0xff; if (bpp>8) *dst++=0xff; if (bpp>16) *dst++=0xff; if (bpp>24) *dst++=0xff; } b = b >> 1; } } } dst += pad; } bm = CreateBitmap(w, h, np, bpp, newarray); delete[] newarray; return bm; } void Fl_GDI_Graphics_Driver::delete_bitmask(fl_uintptr_t bm) { DeleteObject((HGDIOBJ)bm); } void Fl_GDI_Graphics_Driver::draw_fixed(Fl_Bitmap *bm, int X, int Y, int W, int H, int cx, int cy) { X = this->floor(X); Y = this->floor(Y); cache_size(bm, W, H); cx = this->floor(cx); cy = this->floor(cy); HDC tempdc = CreateCompatibleDC(gc_); int save = SaveDC(tempdc); SelectObject(tempdc, (HGDIOBJ)*Fl_Graphics_Driver::id(bm)); SelectObject(gc_, fl_brush()); // secret bitblt code found in old Windows reference manual: BitBlt(gc_, X, Y, W, H, tempdc, cx, cy, 0xE20746L); RestoreDC(tempdc, save); DeleteDC(tempdc); } Fl_GDI_Printer_Graphics_Driver::transparent_f_type Fl_GDI_Printer_Graphics_Driver::TransparentBlt() { HMODULE hMod; static transparent_f_type fpter = ( (hMod = LoadLibrary("MSIMG32.DLL")) ? (transparent_f_type)GetProcAddress(hMod, "TransparentBlt") : NULL ); return fpter; } void Fl_GDI_Printer_Graphics_Driver::draw_bitmap(Fl_Bitmap *bm, int XP, int YP, int WP, int HP, int cx, int cy) { int X, Y, W, H; if (Fl_Graphics_Driver::start_image(bm, XP, YP, WP, HP, cx, cy, X, Y, W, H)) { return; } transparent_f_type fl_TransparentBlt = TransparentBlt(); if (!fl_TransparentBlt) { Fl_Graphics_Driver::draw_bitmap(bm, X, Y, W, H, cx, cy); return; } bool recache = false; if (*id(bm)) { int *pw, *ph; cache_w_h(bm, pw, ph); recache = (*pw != bm->data_w() || *ph != bm->data_h()); } if (recache || !*id(bm)) { bm->uncache(); cache(bm); } HDC tempdc; int save; // algorithm for bitmap output to Fl_GDI_Printer Fl_Color save_c = fl_color(); // save bitmap's desired color uchar r, g, b; Fl::get_color(save_c, r, g, b); r = 255-r; g = 255-g; b = 255-b; Fl_Color background = fl_rgb_color(r, g, b); // a color very different from the bitmap's Fl_Image_Surface *img_surf = new Fl_Image_Surface(bm->data_w(), bm->data_h()); Fl_Surface_Device::push_current(img_surf); fl_color(background); fl_rectf(0,0, bm->data_w(), bm->data_h()); // use this color as offscreen background fl_color(save_c); // back to bitmap's color HDC off_gc = (HDC)fl_graphics_driver->gc(); tempdc = CreateCompatibleDC(off_gc); save = SaveDC(tempdc); SelectObject(tempdc, (HGDIOBJ)*Fl_Graphics_Driver::id(bm)); SelectObject(off_gc, fl_brush()); // use bitmap's desired color BitBlt(off_gc, 0, 0, bm->data_w(), bm->data_h(), tempdc, 0, 0, 0xE20746L); // draw bitmap to offscreen Fl_Surface_Device::pop_current(); SelectObject(tempdc, (HGDIOBJ)img_surf->offscreen()); // use offscreen data // draw it to printer context with background color as transparent float scaleW = bm->data_w()/float(bm->w()); float scaleH = bm->data_h()/float(bm->h()); fl_TransparentBlt(gc_, X, Y, W, H, tempdc, int(cx * scaleW), int(cy * scaleH), int(W * scaleW), int(H * scaleH), RGB(r, g, b) ); delete img_surf; RestoreDC(tempdc, save); DeleteDC(tempdc); if (recache) bm->uncache(); } // Create a 1-bit mask used for alpha blending HBITMAP Fl_GDI_Graphics_Driver::create_alphamask(int w, int h, int d, int ld, const uchar *array) { HBITMAP bm; int bmw = (w + 7) / 8; uchar *bitmap = new uchar[bmw * h]; uchar *bitptr, bit; const uchar *dataptr; int x, y; static uchar dither[16][16] = { // Simple 16x16 Floyd dither { 0, 128, 32, 160, 8, 136, 40, 168, 2, 130, 34, 162, 10, 138, 42, 170 }, { 192, 64, 224, 96, 200, 72, 232, 104, 194, 66, 226, 98, 202, 74, 234, 106 }, { 48, 176, 16, 144, 56, 184, 24, 152, 50, 178, 18, 146, 58, 186, 26, 154 }, { 240, 112, 208, 80, 248, 120, 216, 88, 242, 114, 210, 82, 250, 122, 218, 90 }, { 12, 140, 44, 172, 4, 132, 36, 164, 14, 142, 46, 174, 6, 134, 38, 166 }, { 204, 76, 236, 108, 196, 68, 228, 100, 206, 78, 238, 110, 198, 70, 230, 102 }, { 60, 188, 28, 156, 52, 180, 20, 148, 62, 190, 30, 158, 54, 182, 22, 150 }, { 252, 124, 220, 92, 244, 116, 212, 84, 254, 126, 222, 94, 246, 118, 214, 86 }, { 3, 131, 35, 163, 11, 139, 43, 171, 1, 129, 33, 161, 9, 137, 41, 169 }, { 195, 67, 227, 99, 203, 75, 235, 107, 193, 65, 225, 97, 201, 73, 233, 105 }, { 51, 179, 19, 147, 59, 187, 27, 155, 49, 177, 17, 145, 57, 185, 25, 153 }, { 243, 115, 211, 83, 251, 123, 219, 91, 241, 113, 209, 81, 249, 121, 217, 89 }, { 15, 143, 47, 175, 7, 135, 39, 167, 13, 141, 45, 173, 5, 133, 37, 165 }, { 207, 79, 239, 111, 199, 71, 231, 103, 205, 77, 237, 109, 197, 69, 229, 101 }, { 63, 191, 31, 159, 55, 183, 23, 151, 61, 189, 29, 157, 53, 181, 21, 149 }, { 254, 127, 223, 95, 247, 119, 215, 87, 253, 125, 221, 93, 245, 117, 213, 85 } }; // Generate a 1-bit "screen door" alpha mask; not always pretty, but // definitely fast... In the future we may be able to support things // like the RENDER extension in XFree86, when available, to provide // true RGBA-blended rendering. See: // // http://www.xfree86.org/~keithp/render/protocol.html // // for more info on XRender... // memset(bitmap, 0, bmw * h); for (dataptr = array + d - 1, y = 0; y < h; y ++, dataptr += ld) for (bitptr = bitmap + y * bmw, bit = 1, x = 0; x < w; x ++, dataptr += d) { if (*dataptr > dither[x & 15][y & 15]) *bitptr |= bit; if (bit < 128) bit <<= 1; else { bit = 1; bitptr ++; } } bm = create_bitmask(w, h, bitmap); delete[] bitmap; return bm; } void Fl_GDI_Graphics_Driver::cache(Fl_RGB_Image *img) { Fl_Image_Surface *surface = new Fl_Image_Surface(img->data_w(), img->data_h()); Fl_Surface_Device::push_current(surface); if ((img->d() == 2 || img->d() == 4) && fl_can_do_alpha_blending()) { fl_draw_image(img->array, 0, 0, img->data_w(), img->data_h(), img->d()|FL_IMAGE_WITH_ALPHA, img->ld()); } else { fl_draw_image(img->array, 0, 0, img->data_w(), img->data_h(), img->d(), img->ld()); if (img->d() == 2 || img->d() == 4) { *Fl_Graphics_Driver::mask(img) = (fl_uintptr_t)create_alphamask(img->data_w(), img->data_h(), img->d(), img->ld(), img->array); } } Fl_Surface_Device::pop_current(); Fl_Offscreen offs = Fl_Graphics_Driver::get_offscreen_and_delete_image_surface(surface); int *pw, *ph; cache_w_h(img, pw, ph); *pw = img->data_w(); *ph = img->data_h(); *Fl_Graphics_Driver::id(img) = (fl_uintptr_t)offs; } void Fl_GDI_Graphics_Driver::draw_fixed(Fl_RGB_Image *img, int X, int Y, int W, int H, int cx, int cy) { X = this->floor(X); Y = this->floor(Y); cache_size(img, W, H); cx = this->floor(cx); cy = this->floor(cy); if (W + cx > img->data_w()) W = img->data_w() - cx; if (H + cy > img->data_h()) H = img->data_h() - cy; if (!*Fl_Graphics_Driver::id(img)) { cache(img); } if (*Fl_Graphics_Driver::mask(img)) { HDC new_gc = CreateCompatibleDC(gc_); int save = SaveDC(new_gc); SelectObject(new_gc, (void*)*Fl_Graphics_Driver::mask(img)); BitBlt(gc_, X, Y, W, H, new_gc, cx, cy, SRCAND); SelectObject(new_gc, (void*)*Fl_Graphics_Driver::id(img)); BitBlt(gc_, X, Y, W, H, new_gc, cx, cy, SRCPAINT); RestoreDC(new_gc,save); DeleteDC(new_gc); } else if (img->d()==2 || img->d()==4) { copy_offscreen_with_alpha(X, Y, W, H, (Fl_Offscreen)*Fl_Graphics_Driver::id(img), cx, cy); } else { copy_offscreen(X, Y, W, H, (Fl_Offscreen)*Fl_Graphics_Driver::id(img), cx, cy); } } void Fl_GDI_Graphics_Driver::draw_rgb(Fl_RGB_Image *rgb, int XP, int YP, int WP, int HP, int cx, int cy) { if (Fl_Graphics_Driver::start_image(rgb, XP, YP, WP, HP, cx, cy, XP, YP, WP, HP)) { return; } if ((rgb->d() % 2) == 0 && !fl_can_do_alpha_blending()) { Fl_Graphics_Driver::draw_rgb(rgb, XP, YP, WP, HP, cx, cy); return; } if (!*Fl_Graphics_Driver::id(rgb)) { cache(rgb); } push_clip(XP, YP, WP, HP); XP -= cx; YP -= cy; WP = rgb->w(); HP = rgb->h(); cache_size(rgb, WP, HP); HDC new_gc = CreateCompatibleDC(gc_); int save = SaveDC(new_gc); SelectObject(new_gc, (HBITMAP)*Fl_Graphics_Driver::id(rgb)); if ( (rgb->d() % 2) == 0 ) { alpha_blend_(this->floor(XP), this->floor(YP), WP, HP, new_gc, 0, 0, rgb->data_w(), rgb->data_h()); } else { SetStretchBltMode(gc_, HALFTONE); StretchBlt(gc_, this->floor(XP), this->floor(YP), WP, HP, new_gc, 0, 0, rgb->data_w(), rgb->data_h(), SRCCOPY); } RestoreDC(new_gc, save); DeleteDC(new_gc); pop_clip(); } void Fl_GDI_Printer_Graphics_Driver::draw_rgb(Fl_RGB_Image *rgb, int XP, int YP, int WP, int HP, int cx, int cy) { if (Fl_Graphics_Driver::start_image(rgb, XP, YP, WP, HP, cx, cy, XP, YP, WP, HP)) { return; } XFORM old_tr, tr; GetWorldTransform(gc_, &old_tr); // storing old transform tr.eM11 = float(rgb->w())/float(rgb->data_w()); tr.eM22 = float(rgb->h())/float(rgb->data_h()); tr.eM12 = tr.eM21 = 0; tr.eDx = float(XP); tr.eDy = float(YP); ModifyWorldTransform(gc_, &tr, MWT_LEFTMULTIPLY); if (*id(rgb)) { int *pw, *ph; cache_w_h(rgb, pw, ph); if ( *pw != rgb->data_w() || *ph != rgb->data_h()) rgb->uncache(); } if (!*id(rgb)) cache(rgb); draw_fixed(rgb, 0, 0, int(WP / tr.eM11), int(HP / tr.eM22), int(cx / tr.eM11), int(cy / tr.eM22)); SetWorldTransform(gc_, &old_tr); } void Fl_GDI_Graphics_Driver::uncache(Fl_RGB_Image*, fl_uintptr_t &id_, fl_uintptr_t &mask_) { if (id_) { DeleteObject((Fl_Offscreen)id_); id_ = 0; } if (mask_) { delete_bitmask(mask_); mask_ = 0; } } // 'fl_create_bitmap()' - Create a 1-bit bitmap for drawing... static HBITMAP fl_create_bitmap(int w, int h, const uchar *data) { // we need to pad the lines out to words & swap the bits // in each byte. int w1 = (w + 7) / 8; int w2 = ((w + 15) / 16) * 2; uchar* newarray = new uchar[w2*h]; const uchar* src = data; uchar* dest = newarray; HBITMAP bm; static uchar reverse[16] = /* Bit reversal lookup table */ { 0x00, 0x88, 0x44, 0xcc, 0x22, 0xaa, 0x66, 0xee, 0x11, 0x99, 0x55, 0xdd, 0x33, 0xbb, 0x77, 0xff }; for (int y = 0; y < h; y++) { for (int n = 0; n < w1; n++, src++) *dest++ = (uchar)((reverse[*src & 0x0f] & 0xf0) | (reverse[(*src >> 4) & 0x0f] & 0x0f)); dest += w2 - w1; } bm = CreateBitmap(w, h, 1, 1, newarray); delete[] newarray; return bm; } void Fl_GDI_Graphics_Driver::cache(Fl_Bitmap *bm) { int *pw, *ph; cache_w_h(bm, pw, ph); *pw = bm->data_w(); *ph = bm->data_h(); *Fl_Graphics_Driver::id(bm) = (fl_uintptr_t)fl_create_bitmap(bm->data_w(), bm->data_h(), bm->array); } void Fl_GDI_Graphics_Driver::draw_fixed(Fl_Pixmap *pxm, int X, int Y, int W, int H, int cx, int cy) { X = this->floor(X); Y = this->floor(Y); cache_size(pxm, W, H); cx = this->floor(cx); cy = this->floor(cy); Fl_Region r2 = scale_clip(scale()); if (*Fl_Graphics_Driver::mask(pxm)) { HDC new_gc = CreateCompatibleDC(gc_); int save = SaveDC(new_gc); SelectObject(new_gc, (void*)*Fl_Graphics_Driver::mask(pxm)); BitBlt(gc_, X, Y, W, H, new_gc, cx, cy, SRCAND); SelectObject(new_gc, (void*)*Fl_Graphics_Driver::id(pxm)); BitBlt(gc_, X, Y, W, H, new_gc, cx, cy, SRCPAINT); RestoreDC(new_gc,save); DeleteDC(new_gc); } else { float s = scale(); Fl_Graphics_Driver::scale(1); copy_offscreen(X, Y, W, H, (Fl_Offscreen)*Fl_Graphics_Driver::id(pxm), cx, cy); Fl_Graphics_Driver::scale(s); } unscale_clip(r2); } /* ===== Implementation note about how Fl_Pixmap objects get printed under Windows ===== Fl_Pixmap objects are printed with the print-specific Fl_GDI_Printer_Graphics_Driver which uses the TransparentBlt() system function that can scale the image and treat one of its colors as transparent. Fl_GDI_Printer_Graphics_Driver::draw_pixmap(Fl_Pixmap *,...) sets need_pixmap_bg_color, a static class variable, to 1 and recaches the image. This calls fl_convert_pixmap() that checks the value of need_pixmap_bg_color. When this value is not 0, fl_convert_pixmap runs in a way that memorizes the list of all colors in the pixmap, computes a color absent from this list, uses it for the transparent pixels of the pixmap and puts this color value in need_pixmap_bg_color. As a result, the transparent areas of the image are correcty handled by the printing operation. Variable need_pixmap_bg_color is ultimately reset to 0. Fl_GDI_Graphics_Driver::make_unused_color_() which does the color computation mentionned above is implemented in file src/fl_draw_pixmap.cxx */ void Fl_GDI_Printer_Graphics_Driver::draw_pixmap(Fl_Pixmap *pxm, int XP, int YP, int WP, int HP, int cx, int cy) { int X, Y, W, H; if (start_image(pxm, XP, YP, WP, HP, cx, cy, X, Y, W, H)) return; transparent_f_type fl_TransparentBlt = TransparentBlt(); if (fl_TransparentBlt) { need_pixmap_bg_color = 1; pxm->uncache(); cache(pxm); HDC new_gc = CreateCompatibleDC(gc_); int save = SaveDC(new_gc); SelectObject(new_gc, (void*)*Fl_Graphics_Driver::id(pxm)); // print all of offscreen but its parts in background color float scaleW = pxm->data_w()/float(pxm->w()); float scaleH = pxm->data_h()/float(pxm->h()); fl_TransparentBlt(gc_, X, Y, W, H, new_gc, int(cx * scaleW), int(cy * scaleH), int(W * scaleW), int(H * scaleH), need_pixmap_bg_color ); RestoreDC(new_gc,save); DeleteDC(new_gc); need_pixmap_bg_color = 0; } else { copy_offscreen(X, Y, W, H, (Fl_Offscreen)*Fl_Graphics_Driver::id(pxm), cx, cy); } } // Makes an RGB triplet different from all the colors used in the pixmap // and computes Fl_Graphics_Driver::need_pixmap_bg_color from this triplet void Fl_GDI_Graphics_Driver::make_unused_color_(uchar &r, uchar &g, uchar &b, int color_count, void **data) { typedef struct { uchar r; uchar g; uchar b; } UsedColor; UsedColor *used_colors = *(UsedColor**)data; int i; r = 2; g = 3; b = 4; while (1) { for ( i=0; i= color_count) { free((void*)used_colors); *(UsedColor**)data = NULL; need_pixmap_bg_color = RGB(r, g, b); return; } if (r < 255) { r++; } else { r = 0; if (g < 255) { g++; } else { g = 0; b++; } } } } void Fl_GDI_Graphics_Driver::cache(Fl_Pixmap *img) { Fl_Image_Surface *surf = new Fl_Image_Surface(img->data_w(), img->data_h()); Fl_Surface_Device::push_current(surf); uchar **pbitmap = surf->driver()->mask_bitmap(); *pbitmap = (uchar*)1;// will instruct fl_draw_pixmap() to compute the image's mask fl_draw_pixmap(img->data(), 0, 0, FL_BLACK); uchar *bitmap = *pbitmap; if (bitmap) { *Fl_Graphics_Driver::mask(img) = (fl_uintptr_t)create_bitmask(img->data_w(), img->data_h(), bitmap); delete[] bitmap; } *pbitmap = 0; Fl_Surface_Device::pop_current(); Fl_Offscreen id = Fl_Graphics_Driver::get_offscreen_and_delete_image_surface(surf); int *pw, *ph; cache_w_h(img, pw, ph); *pw = img->data_w(); *ph = img->data_h(); *Fl_Graphics_Driver::id(img) = (fl_uintptr_t)id; } void Fl_GDI_Graphics_Driver::uncache_pixmap(fl_uintptr_t offscreen) { DeleteObject((Fl_Offscreen)offscreen); }