// // Portable drawing routines for the Fast Light Tool Kit (FLTK). // // Copyright 1998-2017 by Bill Spitzak and others. // // This library is free software. Distribution and use rights are outlined in // the file "COPYING" which should have been included with this file. If this // file is missing or damaged, see the license at: // // https://www.fltk.org/COPYING.php // // Please see the following page on how to report bugs and issues: // // https://www.fltk.org/bugs.php // /** \file fl_vertex.cxx \brief Portable drawing code for drawing arbitrary shapes with simple 2D transformations. */ // Portable code for drawing arbitrary shapes with simple 2D transformations. // See also fl_arc.cxx // matt: the Quartz implementation purposely doesn't use the Quartz matrix // operations for reasons of compatibility and maintainability // ----------------------------------------------------------------------------- // all driver code is now in drivers/XXX/Fl_XXX_Graphics_Driver_xyz.cxx // ----------------------------------------------------------------------------- #include #include #include #include /** \cond DriverDev \addtogroup DriverDeveloper \{ */ /** see fl_push_matrix() */ void Fl_Graphics_Driver::push_matrix() { if (sptr==matrix_stack_size) Fl::error("fl_push_matrix(): matrix stack overflow."); else stack[sptr++] = m; } /** see fl_pop_matrix() */ void Fl_Graphics_Driver::pop_matrix() { if (sptr==0) Fl::error("fl_pop_matrix(): matrix stack underflow."); else m = stack[--sptr]; } /** see fl_mult_matrix() */ void Fl_Graphics_Driver::mult_matrix(double a, double b, double c, double d, double x, double y) { matrix o; o.a = a*m.a + b*m.c; o.b = a*m.b + b*m.d; o.c = c*m.a + d*m.c; o.d = c*m.b + d*m.d; o.x = x*m.a + y*m.c + m.x; o.y = x*m.b + y*m.d + m.y; m = o; } /** see fl_rotate() */ void Fl_Graphics_Driver::rotate(double d) { if (d) { double s, c; if (d == 0) {s = 0; c = 1;} else if (d == 90) {s = 1; c = 0;} else if (d == 180) {s = 0; c = -1;} else if (d == 270 || d == -90) {s = -1; c = 0;} else {s = sin(d*M_PI/180); c = cos(d*M_PI/180);} mult_matrix(c,-s,s,c,0,0); } } /** see fl_translate() */ void Fl_Graphics_Driver::translate(double x,double y) { mult_matrix(1,0,0,1,x,y); } /** see fl_begin_points() */ void Fl_Graphics_Driver::begin_points() { n = 0; what = POINT_; } /** see fl_begin_line() */ void Fl_Graphics_Driver::begin_line() { n = 0; what = LINE; } /** see fl_begin_loop() */ void Fl_Graphics_Driver::begin_loop() { n = 0; what = LOOP; } /** see fl_begin_polygon() */ void Fl_Graphics_Driver::begin_polygon() { n = 0; what = POLYGON; } /** see fl_transform_x() */ double Fl_Graphics_Driver::transform_x(double x, double y) { return x*m.a + y*m.c + m.x; } /** see fl_transform_y() */ double Fl_Graphics_Driver::transform_y(double x, double y) { return x*m.b + y*m.d + m.y; } /** see fl_transform_dx() */ double Fl_Graphics_Driver::transform_dx(double x, double y) { return x*m.a + y*m.c; } /** see fl_transform_dy() */ double Fl_Graphics_Driver::transform_dy(double x, double y) { return x*m.b + y*m.d; } /** \} \endcond */