1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
//
// SVG image code for the Fast Light Tool Kit (FLTK).
//
// Copyright 2017-2022 by Bill Spitzak and others.
//
// This library is free software. Distribution and use rights are outlined in
// the file "COPYING" which should have been included with this file. If this
// file is missing or damaged, see the license at:
//
// https://www.fltk.org/COPYING.php
//
// Please see the following page on how to report bugs and issues:
//
// https://www.fltk.org/bugs.php
//
#include <config.h>
#if defined(FLTK_USE_SVG) || defined(FL_DOXYGEN)
#include <FL/Fl_SVG_Image.H>
#include <FL/Fl_Shared_Image.H>
#include <FL/fl_utf8.h>
#include <FL/fl_draw.H>
#include <FL/fl_string_functions.h>
#include "Fl_Screen_Driver.H"
#include "Fl_System_Driver.H"
#include <stdio.h>
#include <stdlib.h>
#if !defined(HAVE_LONG_LONG)
static double strtoll(const char *str, char **endptr, int base) {
return (double)strtol(str, endptr, base);
}
#endif
#ifdef _MSC_VER
#pragma warning (push) // Save #pragma warning status
#pragma warning (disable: 4244) // Switch off conversion warnings
#endif
#define NANOSVG_ALL_COLOR_KEYWORDS // Include full list of color keywords.
#define NANOSVG_IMPLEMENTATION // Expands implementation
#include "../nanosvg/nanosvg.h"
#define NANOSVGRAST_IMPLEMENTATION // Expands implementation
#include "../nanosvg/nanosvgrast.h"
#ifdef _MSC_VER
#pragma warning (pop) // Restore #pragma warning status
#endif
#if defined(HAVE_LIBZ)
#include <zlib.h>
#endif
/** Load an SVG image from a file.
This constructor loads the SVG image from a .svg or .svgz file. The reader
recognizes if the data is compressed, and decompresses it if zlib is available
(HAVE_LIBZ).
\param filename the filename for a .svg or .svgz file
*/
Fl_SVG_Image::Fl_SVG_Image(const char *filename) :
Fl_RGB_Image(NULL, 0, 0, 4)
{
init_(filename, NULL, 0);
}
/** Load an SVG image from memory.
This constructor loads the SVG image from a block of memory. This version is
commonly used for uncompressed text data, but the reader recognizes if the data
is compressed, and decompresses it if zlib is available (HAVE_LIBZ).
\param sharedname if not \c NULL, a shared image will be generated with this name
\param svg_data a pointer to the memory location of the SVG image data
\note In-memory SVG data is parsed by the object constructor and is no longer
needed after construction.
*/
Fl_SVG_Image::Fl_SVG_Image(const char *sharedname, const char *svg_data) :
Fl_RGB_Image(NULL, 0, 0, 4)
{
init_(sharedname, (const unsigned char*)svg_data, 0);
}
/** Load an SVG image from memory.
This constructor loads the SVG image from a block of memory. This version is
commonly used for compressed binary data, but the reader recognizes if the data
is uncompressed, and reads it as a text block.
\param name if not \c NULL, a shared image will be generated with this name
\param svg_data a pointer to the memory location of the SVG image data
\param length of \p svg_data or \c 0 if the length is unknown. This will
protect memory outside of the \p svg_data array from illegal read
operations for compressed SVG data
\note In-memory SVG data is parsed by the object constructor and is no longer
needed after construction.
*/
Fl_SVG_Image::Fl_SVG_Image(const char *name, const unsigned char *svg_data, size_t length) :
Fl_RGB_Image(NULL, 0, 0, 4)
{
init_(name, svg_data, length);
}
// private constructor
Fl_SVG_Image::Fl_SVG_Image(const Fl_SVG_Image *source) :
Fl_RGB_Image(NULL, 0, 0, 4)
{
counted_svg_image_ = source->counted_svg_image_;
counted_svg_image_->ref_count++;
to_desaturate_ = false;
average_weight_ = 1;
proportional = true;
w(source->w());
h(source->h());
rasterized_ = false;
raster_w_ = raster_h_ = 0;
}
/** The destructor frees all memory and server resources that are used by the SVG image. */
Fl_SVG_Image::~Fl_SVG_Image() {
if ( --counted_svg_image_->ref_count <= 0) {
nsvgDelete(counted_svg_image_->svg_image);
delete counted_svg_image_;
}
}
float Fl_SVG_Image::svg_scaling_(int W, int H) {
float f1 = float(W) / int(counted_svg_image_->svg_image->width+0.5);
float f2 = float(H) / int(counted_svg_image_->svg_image->height+0.5);
return (f1 < f2) ? f1 : f2;
}
#if defined(HAVE_LIBZ)
// Decompress gzip data in memory
#define CHUNK_SIZE (2048)
static int svg_inflate(uchar *src, size_t src_length, uchar *&dst, size_t &dst_length) {
// allocate space for decompressed data in chunks
typedef struct Chunk {
Chunk() { next = NULL; }
struct Chunk *next;
uchar data[CHUNK_SIZE];
} Chunk;
Chunk *first = NULL;
Chunk *chunk = NULL, *next_chunk;
z_stream stream = { };
int err = Z_OK;
dst = 0;
dst_length = 0;
stream.next_in = (z_const Bytef *)src;
stream.avail_in = 0;
stream.zalloc = (alloc_func)0;
stream.zfree = (free_func)0;
stream.opaque = (voidpf)0;
// initialize zlib for inflating compressed data
err = inflateInit2(&stream, 31);
if (err != Z_OK) return err;
gz_header header = { };
err = inflateGetHeader(&stream, &header);
if (err != Z_OK) return err;
stream.avail_out = 0;
stream.avail_in = (uInt)(src_length ? src_length : -1);
// inflate into as many chunks as needed
do {
if (stream.avail_out == 0) {
next_chunk = new Chunk;
if (!first) first = next_chunk; else chunk->next = next_chunk;
chunk = next_chunk;
stream.avail_out = CHUNK_SIZE;
stream.next_out = chunk->data;
}
err = inflate(&stream, Z_NO_FLUSH);
} while (err == Z_OK);
inflateEnd(&stream);
// copy chunk data into a new continuous data block
if (err == Z_STREAM_END) {
size_t nn = dst_length = stream.total_out;
dst = (uchar*)malloc(dst_length+1); // leave room for a trailing NUL
uchar *d = dst;
chunk = first;
while (chunk && nn>0) {
size_t n = nn > CHUNK_SIZE ? CHUNK_SIZE : nn;
memcpy(d, chunk->data, n);
d += n;
nn -= n;
chunk = chunk->next;
}
}
// delete all the chunks that we allocated
chunk = first;
while (chunk) {
next_chunk = chunk->next;
delete chunk;
chunk = next_chunk;
}
return (err == Z_STREAM_END)
? Z_OK
: (err == Z_NEED_DICT)
? Z_DATA_ERROR
: ((err == Z_BUF_ERROR) && stream.avail_out)
? Z_DATA_ERROR
: err;
}
#endif // defined(HAVE_LIBZ)
void Fl_SVG_Image::init_(const char *name, const unsigned char *in_data, size_t length) {
counted_svg_image_ = new counted_NSVGimage;
counted_svg_image_->svg_image = NULL;
counted_svg_image_->ref_count = 1;
to_desaturate_ = false;
average_weight_ = 1;
proportional = true;
// yes, this is a const cast to avoid duplicating user supplied data
uchar *data = const_cast<uchar*>(in_data); // 🤨 careful with this, don't overwrite user supplied data in nsvgParse()
// this is to make it clear what we are doing
const char *sharedname = data ? name : NULL;
const char *filename = data ? NULL : name;
// prepare with error data, so we can just return if an error occurs
d(-1);
ld(ERR_FORMAT);
rasterized_ = false;
raster_w_ = raster_h_ = 0;
// if we are reading from a file, just read the entire file into a memory block
if (!data) {
FILE *f = fl_fopen(filename, "rb");
if (f) {
fseek(f, 0, SEEK_END);
length = ftell(f);
fseek(f, 0, SEEK_SET);
data = (uchar*)malloc(length+1);
if (data) {
if (fread((void*)data, 1, length, f) == length) {
data[length] = 0;
} else {
free((void*)data);
data = NULL;
}
}
fclose(f);
}
if (!data) return;
}
// now if our data is compressed, we use zlib to infalte it
if (length==0 || length>10) {
if (data[0] == 0x1f && data[1] == 0x8b) {
#if defined(HAVE_LIBZ)
// this is gzip compressed data, so we decompress it and preplace the data array
uchar *uncompressed_data = NULL;
size_t uncompressed_data_length = 0;
int err = svg_inflate(data, length, uncompressed_data, uncompressed_data_length);
if (err == Z_OK) {
// replace compressed data with uncompressed data
if (in_data == NULL) free(data);
length = (size_t)uncompressed_data_length;
data = (uchar*)uncompressed_data;
data[length] = 0;
} else {
if (in_data != data) free(data);
return;
}
#else
if (in_data != data) free(data);
return;
#endif // HAVE_LIBZ
}
}
// now our SVG data should be in text format in `data`, terminated by a NUL
// nsvgParse is destructive, so if in_data was set, we must duplicate the data first!
if (in_data == data) {
if (length) {
data = (uchar*)malloc(length+1);
memcpy(data, in_data, length);
data[length] = 0;
} else {
data = (uchar*)fl_strdup((char*)in_data);
}
}
counted_svg_image_->svg_image = nsvgParse((char*)data, "px", 96);
if (in_data != data) free(data);
if (counted_svg_image_->svg_image->width != 0 && counted_svg_image_->svg_image->height != 0) {
w(int(counted_svg_image_->svg_image->width + 0.5));
h(int(counted_svg_image_->svg_image->height + 0.5));
d(4);
ld(0);
}
if (sharedname && w() && h()) {
Fl_Shared_Image *si = new Fl_Shared_Image(sharedname, this);
si->add();
}
}
void Fl_SVG_Image::rasterize_(int W, int H) {
static NSVGrasterizer *rasterizer = nsvgCreateRasterizer();
double fx, fy;
if (proportional) {
fx = svg_scaling_(W, H);
fy = fx;
} else {
fx = (double)W / counted_svg_image_->svg_image->width;
fy = (double)H / counted_svg_image_->svg_image->height;
}
array = new uchar[W*H*4];
nsvgRasterizeXY(rasterizer, counted_svg_image_->svg_image, 0, 0, float(fx), float(fy), (uchar* )array, W, H, W*4);
alloc_array = 1;
data((const char * const *)&array, 1);
d(4);
if (to_desaturate_) Fl_RGB_Image::desaturate();
if (average_weight_ < 1) Fl_RGB_Image::color_average(average_color_, average_weight_);
rasterized_ = true;
raster_w_ = W;
raster_h_ = H;
}
Fl_Image *Fl_SVG_Image::copy(int W, int H) const {
Fl_SVG_Image *svg2 = new Fl_SVG_Image(this);
svg2->to_desaturate_ = to_desaturate_;
svg2->average_weight_ = average_weight_;
svg2->average_color_ = average_color_;
svg2->proportional = proportional;
svg2->w(W); svg2->h(H);
return svg2;
}
/** Have the svg data (re-)rasterized using the given \p width and \p height values.
By default, the resulting image w() and h() will be close to \p width and \p height
while preserving the width/height ratio of the SVG data.
If \ref proportional was set to \c false, the image is rasterized to the exact \c width
and \c height values. In both cases, data_w() and data_h() values are set to w() and h(),
respectively.
*/
void Fl_SVG_Image::resize(int width, int height) {
if (ld() < 0 || width <= 0 || height <= 0) {
return;
}
int w1 = width, h1 = height;
if (proportional) {
float f = svg_scaling_(width, height);
w1 = int( counted_svg_image_->svg_image->width*f + 0.5 );
h1 = int( counted_svg_image_->svg_image->height*f + 0.5 );
}
w(w1); h(h1);
if (rasterized_ && w1 == raster_w_ && h1 == raster_h_) return;
if (array) {
delete[] array;
array = NULL;
}
uncache();
rasterize_(w1, h1);
}
void Fl_SVG_Image::cache_size_(int &width, int &height) {
if (proportional) {
// Keep the rasterized image proportional to its source-level width and height
// while maintaining it large enough to allow image tiling.
float f = counted_svg_image_->svg_image->width / counted_svg_image_->svg_image->height;
if (height * f >= width) width = int(height * f + 0.5);
else height = int(width/f + 0.5);
}
}
void Fl_SVG_Image::draw(int X, int Y, int W, int H, int cx, int cy) {
/* There may be several pixels per FLTK unit in an area
of size w() x h() of the display. This occurs, e.g., with Apple retina displays
and when the display is rescaled.
The SVG is rasterized to the area dimension in pixels. The image is then drawn
scaled to its size expressed in FLTK units. With this procedure,
the SVG image is drawn using the full resolution of the display.
*/
int w1 = w(), h1 = h();
int f = fl_graphics_driver->has_feature(Fl_Graphics_Driver::PRINTER) ? 2 : 1;
int w2 = f*w(), h2 = f*h();
fl_graphics_driver->cache_size(this, w2, h2);
resize(w2, h2);
scale(w1, h1, 0, 1);
Fl_RGB_Image::draw(X, Y, W, H, cx, cy);
}
void Fl_SVG_Image::desaturate() {
to_desaturate_ = true;
Fl_RGB_Image::desaturate();
}
void Fl_SVG_Image::color_average(Fl_Color c, float i) {
average_color_ = c;
average_weight_ = i;
Fl_RGB_Image::color_average(c, i);
}
/** Makes sure the object is fully initialized.
This function rasterizes the SVG image, and consequently initializes its \ref array member, if that was not done before. */
void Fl_SVG_Image::normalize() {
if (!array) resize(w(), h());
}
#endif // FLTK_USE_SVG
|