1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
|
//
// Portable drawing routines for the Fast Light Tool Kit (FLTK).
//
// Copyright 1998-2016 by Bill Spitzak and others.
//
// This library is free software. Distribution and use rights are outlined in
// the file "COPYING" which should have been included with this file. If this
// file is missing or damaged, see the license at:
//
// https://www.fltk.org/COPYING.php
//
// Please see the following page on how to report bugs and issues:
//
// https://www.fltk.org/bugs.php
//
/**
\file Fl_OpenGL_Graphics_Driver_vertex.cxx
\brief Portable drawing code for drawing arbitrary shapes with
simple 2D transformations, implemented for OpenGL.
*/
#include "Fl_OpenGL_Graphics_Driver.H"
#include <FL/fl_draw.H>
#include <FL/gl.h>
#include <FL/math.h>
#include <stdlib.h>
// OpenGL does not support rednering non-convex polygons. Calling
// glBegin(GL_POLYGON); witha complex outline will create rather random
// errors, often overwrinting gaps and holes.
//
// Defining SLOW_COMPLEX_POLY will activate a line-by-line drawing method
// for complex polygons that is correct for FLTK, but also a lot slower.
//
// It's recommended that SLOW_COMPLEX_POLY is defined, but fl_begin_polygon()
// is used instead of fl_begin_complex_polygon() whenever possible.
//#undef SLOW_COMPLEX_POLY
#define SLOW_COMPLEX_POLY
#ifdef SLOW_COMPLEX_POLY
# define GAP (1e9f)
#endif
// Event though there are faster versions of the functions in OpenGL,
// we use the default FLTK implementation for compatibility in the
// following functions.
// void Fl_OpenGL_Graphics_Driver::push_matrix()
// void Fl_OpenGL_Graphics_Driver::pop_matrix()
// void Fl_OpenGL_Graphics_Driver::mult_matrix(double a, double b, double c, double d, double x, double y)
// void Fl_OpenGL_Graphics_Driver::rotate(double d)
// double Fl_OpenGL_Graphics_Driver::transform_x(double x, double y)
// double Fl_OpenGL_Graphics_Driver::transform_y(double x, double y)
// double Fl_OpenGL_Graphics_Driver::transform_dx(double x, double y)
// double Fl_OpenGL_Graphics_Driver::transform_dy(double x, double y)
void Fl_OpenGL_Graphics_Driver::begin_points() {
n = 0; gap_ = 0;
what = POINTS;
glBegin(GL_POINTS);
}
void Fl_OpenGL_Graphics_Driver::end_points() {
glEnd();
}
void Fl_OpenGL_Graphics_Driver::begin_line() {
n = 0; gap_ = 0;
what = LINE;
glBegin(GL_LINE_STRIP);
}
void Fl_OpenGL_Graphics_Driver::end_line() {
glEnd();
}
void Fl_OpenGL_Graphics_Driver::begin_loop() {
n = 0; gap_ = 0;
what = LOOP;
glBegin(GL_LINE_LOOP);
}
void Fl_OpenGL_Graphics_Driver::end_loop() {
glEnd();
}
void Fl_OpenGL_Graphics_Driver::begin_polygon() {
n = 0; gap_ = 0;
what = POLYGON;
glBegin(GL_POLYGON);
}
void Fl_OpenGL_Graphics_Driver::end_polygon() {
glEnd();
}
void Fl_OpenGL_Graphics_Driver::begin_complex_polygon() {
n = 0;
what = COMPLEX_POLYGON;
#ifndef SLOW_COMPLEX_POLY
glBegin(GL_POLYGON);
#endif
}
void Fl_OpenGL_Graphics_Driver::gap() {
#ifdef SLOW_COMPLEX_POLY
// drop gaps at the start or gap after gap
if (n==0 || n==gap_) // || pnVertex==pVertexGapStart)
return;
// create a loop
XPOINT& p = xpoint[gap_];
transformed_vertex(p.x, p.y);
transformed_vertex(GAP, 0.0);
gap_ = n;
#else
glEnd();
glBegin(GL_POLYGON);
#endif
}
#ifdef SLOW_COMPLEX_POLY
// Draw a complex polygon line by line from the top to the bottom.
void Fl_OpenGL_Graphics_Driver::end_complex_polygon()
{
int i, y;
XPOINT *v0, *v1;
// don't bother if no polygon is defined
if (n < 2) return;
// make sure that we always have a closed loop by appending the first
// coordinate again as the alst coordinate
gap();
// find the bounding box for this polygon
v0 = xpoint;
v0->y -= 0.1f;
float xMin = v0->x, xMax = xMin;
int yMin = (int)v0->y, yMax = yMin;
for (i = 1; i < n; i++) {
v0++;
v0->y -= 0.1f;
float v0x = v0->x;
int v0y = (int)v0->y;
if (v0x == GAP) continue;
if (v0x <= xMin) xMin = v0x;
if (v0x >= xMax) xMax = v0x;
if (v0y <= yMin) yMin = v0y;
if (v0y >= yMax) yMax = v0y;
}
int nNodes;
float *nodeX = (float*)malloc((n-1)*sizeof(float)), swap;
if (!nodeX)
return;
// loop through the rows of the image
for (y = yMin; y <= yMax; y++) {
// Build a list of all crossing points with this y axis
v0 = xpoint + 0;
v1 = xpoint + 1;
nNodes = 0;
for (i = 1; i < n; i++) {
if (v1->x==GAP) { // skip the gap
i++; v0++; v1++; v0++; v1++;
continue;
}
if ( (v1->y < y && v0->y >= y)
|| (v0->y < y && v1->y >= y) )
{
float dy = v0->y - v1->y;
if (fabsf(dy)>.0001f) {
nodeX[nNodes++] = v1->x + ((y - v1->y) / dy) * (v0->x - v1->x);
} else {
nodeX[nNodes++] = v1->x;
}
}
v0++; v1++;
}
// sort the nodes, via a simple Bubble sort
i = 0;
while (i < nNodes-1) {
if (nodeX[i] > nodeX[i+1]) {
swap = nodeX[i];
nodeX[i] = nodeX[i+1];
nodeX[i+1] = swap;
if (i) i--;
} else {
i++;
}
}
// fill the pixels between node pairs
// Using lines requires additional attention to the current line width and pattern
// We are using glRectf instead
// glBegin(GL_LINES);
for (i = 0; i < nNodes; i += 2) {
float x0 = nodeX[i];
if (x0 >= xMax)
break;
float x1 = nodeX[i+1];
if (x1 > xMin) {
if (x0 < xMin)
x0 = xMin;
if (x1 > xMax)
x1 = xMax;
glRectf((GLfloat)(x0-0.25f), (GLfloat)(y), (GLfloat)(x1+0.25f), (GLfloat)(y+1.0f));
// glVertex2f((GLfloat)x0, (GLfloat)y);
// glVertex2f((GLfloat)x1, (GLfloat)y);
}
}
// glEnd();
}
::free(nodeX);
}
#else
// FXIME: non-convex polygons are not supported yet
// use gluTess* functions to do this; search for gluBeginPolygon
void Fl_OpenGL_Graphics_Driver::end_complex_polygon() {
glEnd();
}
#endif
// remove equal points from closed path
void Fl_OpenGL_Graphics_Driver::fixloop() { }
void Fl_OpenGL_Graphics_Driver::transformed_vertex(double xf, double yf) {
#ifdef SLOW_COMPLEX_POLY
if (what==COMPLEX_POLYGON) {
Fl_Graphics_Driver::transformed_vertex(xf, yf);
} else {
glVertex2d(xf, yf);
}
#else
glVertex2d(xf, yf);
#endif
}
void Fl_OpenGL_Graphics_Driver::circle(double cx, double cy, double r) {
double rx = r * (m.c ? sqrt(m.a*m.a+m.c*m.c) : fabs(m.a));
double ry = r * (m.b ? sqrt(m.b*m.b+m.d*m.d) : fabs(m.d));
double rMax;
if (ry>rx) rMax = ry; else rMax = rx;
// from http://slabode.exofire.net/circle_draw.shtml and many other places
int num_segments = (int)(10 * sqrt(rMax))+1;
double theta = 2 * M_PI / float(num_segments);
double tangetial_factor = tan(theta);
double radial_factor = cos(theta);//calculate the radial factor
double x = r; //we start at angle = 0
double y = 0;
glBegin(GL_LINE_LOOP);
for(int ii = 0; ii < num_segments; ii++) {
vertex(x + cx, y + cy); // output vertex
double tx = -y;
double ty = x;
x += tx * tangetial_factor;
y += ty * tangetial_factor;
x *= radial_factor;
y *= radial_factor;
}
glEnd();
}
|