1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
|
//
// "$Id$"
//
// Pixmap drawing code for the Fast Light Tool Kit (FLTK).
//
// Copyright 1998-2010 by Bill Spitzak and others.
//
// This library is free software. Distribution and use rights are outlined in
// the file "COPYING" which should have been included with this file. If this
// file is missing or damaged, see the license at:
//
// http://www.fltk.org/COPYING.php
//
// Please report all bugs and problems on the following page:
//
// http://www.fltk.org/str.php
//
// Implemented without using the xpm library (which I can't use because
// it interferes with the color cube used by fl_draw_image).
// Current implementation is cheap and slow, and works best on a full-color
// display. Transparency is not handled, and colors are dithered to
// the color cube. Color index is achieved by adding the id
// characters together! Also mallocs a lot of temporary memory!
// Notice that there is no pixmap file interface. This is on purpose,
// as I want to discourage programs that require support files to work.
// All data needed by a program ui should be compiled in!!!
#include <FL/Fl.H>
#include <FL/fl_draw.H>
#include <FL/x.H>
#include <stdio.h>
#include "flstring.h"
static int ncolors, chars_per_pixel;
/**
Get the dimensions of a pixmap.
An XPM image contains the dimensions in its data. This function
returns te width and height.
\param[in] data pointer to XPM image data.
\param[out] w,h width and height of image
\returns non-zero if the dimensions were parsed OK
\returns 0 if there were any problems
*/
int fl_measure_pixmap(/*const*/ char* const* data, int &w, int &h) {
return fl_measure_pixmap((const char*const*)data,w,h);
}
/**
Get the dimensions of a pixmap.
\see fl_measure_pixmap(char* const* data, int &w, int &h)
*/
int fl_measure_pixmap(const char * const *cdata, int &w, int &h) {
int i = sscanf(cdata[0],"%d%d%d%d",&w,&h,&ncolors,&chars_per_pixel);
if (i<4 || w<=0 || h<=0 ||
(chars_per_pixel!=1 && chars_per_pixel!=2) ) return w=0;
return 1;
}
#ifdef U64
// The callback from fl_draw_image to get a row of data passes this:
struct pixmap_data {
int w, h;
const uchar*const* data;
union {
U64 colors[256];
U64* byte1[256];
};
};
// callback for 1 byte per pixel:
static void cb1(void*v, int x, int y, int w, uchar* buf) {
pixmap_data& d = *(pixmap_data*)v;
const uchar* p = d.data[y]+x;
U64* q = (U64*)buf;
for (int X=w; X>0; X-=2, p += 2) {
if (X>1) {
# if WORDS_BIGENDIAN
*q++ = (d.colors[p[0]]<<32) | d.colors[p[1]];
# else
*q++ = (d.colors[p[1]]<<32) | d.colors[p[0]];
# endif
} else {
# if WORDS_BIGENDIAN
*q++ = d.colors[p[0]]<<32;
# else
*q++ = d.colors[p[0]];
# endif
}
}
}
// callback for 2 bytes per pixel:
static void cb2(void*v, int x, int y, int w, uchar* buf) {
pixmap_data& d = *(pixmap_data*)v;
const uchar* p = d.data[y]+2*x;
U64* q = (U64*)buf;
for (int X=w; X>0; X-=2) {
U64* colors = d.byte1[*p++];
int index = *p++;
if (X>1) {
U64* colors1 = d.byte1[*p++];
int index1 = *p++;
# if WORDS_BIGENDIAN
*q++ = (colors[index]<<32) | colors1[index1];
# else
*q++ = (colors1[index1]<<32) | colors[index];
# endif
} else {
# if WORDS_BIGENDIAN
*q++ = colors[index]<<32;
# else
*q++ = colors[index];
# endif
}
}
}
#else // U32
// The callback from fl_draw_image to get a row of data passes this:
struct pixmap_data {
int w, h;
const uchar*const* data;
union {
U32 colors[256];
U32* byte1[256];
};
};
// callback for 1 byte per pixel:
static void cb1(void*v, int x, int y, int w, uchar* buf) {
pixmap_data& d = *(pixmap_data*)v;
const uchar* p = d.data[y]+x;
U32* q = (U32*)buf;
for (int X=w; X--;) *q++ = d.colors[*p++];
}
// callback for 2 bytes per pixel:
static void cb2(void*v, int x, int y, int w, uchar* buf) {
pixmap_data& d = *(pixmap_data*)v;
const uchar* p = d.data[y]+2*x;
U32* q = (U32*)buf;
for (int X=w; X--;) {
U32* colors = d.byte1[*p++];
*q++ = colors[*p++];
}
}
#endif // U64 else U32
uchar **fl_mask_bitmap; // if non-zero, create bitmap and store pointer here
/**
Draw XPM image data, with the top-left corner at the given position.
The image is dithered on 8-bit displays so you won't lose color
space for programs displaying both images and pixmaps.
\param[in] data pointer to XPM image data
\param[in] x,y position of top-left corner
\param[in] bg background color
\returns 0 if there was any error decoding the XPM data.
*/
int fl_draw_pixmap(/*const*/ char* const* data, int x,int y,Fl_Color bg) {
return fl_draw_pixmap((const char*const*)data,x,y,bg);
}
#ifdef WIN32
// to compute an unused color to be used for the pixmap background
FL_EXPORT UINT win_pixmap_bg_color; // the RGB() of the pixmap background color
static int color_count; // # of non-transparent colors used in pixmap
static uchar *used_colors; // used_colors[3*i+j] j=0,1,2 are the RGB values of the ith used color
static void make_unused_color(uchar &r, uchar &g, uchar &b)
// makes an RGB triplet different from all the colors used in the pixmap
// and compute win_pixmap_bg_color from this triplet
{
int i;
r = 2; g = 3; b = 4;
while (1) {
for ( i = 0; i < color_count; i++) {
if(used_colors[3*i] == r && used_colors[3*i+1] == g && used_colors[3*i+2] == b) break;
}
if (i >= color_count) {
free(used_colors);
win_pixmap_bg_color = RGB(r, g, b);
return;
}
if (r < 255) r++;
else {
r = 0;
if (g < 255) g++;
else {
g = 0;
b++;
}
}
}
}
#endif
/**
Draw XPM image data, with the top-left corner at the given position.
\see fl_draw_pixmap(char* const* data, int x, int y, Fl_Color bg)
*/
int fl_draw_pixmap(const char*const* cdata, int x, int y, Fl_Color bg) {
pixmap_data d;
if (!fl_measure_pixmap(cdata, d.w, d.h)) return 0;
const uchar*const* data = (const uchar*const*)(cdata+1);
int transparent_index = -1;
uchar *transparent_c = (uchar *)0; // such that transparent_c[0,1,2] are the RGB of the transparent color
#ifdef WIN32
color_count = 0;
used_colors = (uchar *)malloc(abs(ncolors)*3*sizeof(uchar));
#endif
if (ncolors < 0) { // FLTK (non standard) compressed colormap
ncolors = -ncolors;
const uchar *p = *data++;
// if first color is ' ' it is transparent (put it later to make
// it not be transparent):
if (*p == ' ') {
uchar* c = (uchar*)&d.colors[(int)' '];
#ifdef U64
*(U64*)c = 0;
# if WORDS_BIGENDIAN
c += 4;
# endif
#endif
transparent_index = ' ';
Fl::get_color(bg, c[0], c[1], c[2]); c[3] = 0;
transparent_c = c;
p += 4;
ncolors--;
}
// read all the rest of the colors:
for (int i=0; i < ncolors; i++) {
uchar* c = (uchar*)&d.colors[*p++];
#ifdef U64
*(U64*)c = 0;
# if WORDS_BIGENDIAN
c += 4;
# endif
#endif
#ifdef WIN32
used_colors[3*color_count] = *p;
used_colors[3*color_count+1] = *(p+1);
used_colors[3*color_count+2] = *(p+2);
color_count++;
#endif
*c++ = *p++;
*c++ = *p++;
*c++ = *p++;
#ifdef __APPLE_QUARTZ__
*c = 255;
#else
*c = 0;
#endif
}
} else { // normal XPM colormap with names
if (chars_per_pixel>1) memset(d.byte1, 0, sizeof(d.byte1));
for (int i=0; i<ncolors; i++) {
const uchar *p = *data++;
// the first 1 or 2 characters are the color index:
int ind = *p++;
uchar* c;
if (chars_per_pixel>1) {
#ifdef U64
U64* colors = d.byte1[ind];
if (!colors) colors = d.byte1[ind] = new U64[256];
#else
U32* colors = d.byte1[ind];
if (!colors) colors = d.byte1[ind] = new U32[256];
#endif
c = (uchar*)&colors[*p];
ind = (ind<<8)|*p++;
} else {
c = (uchar *)&d.colors[ind];
}
// look for "c word", or last word if none:
const uchar *previous_word = p;
for (;;) {
while (*p && isspace(*p)) p++;
uchar what = *p++;
while (*p && !isspace(*p)) p++;
while (*p && isspace(*p)) p++;
if (!*p) {p = previous_word; break;}
if (what == 'c') break;
previous_word = p;
while (*p && !isspace(*p)) p++;
}
#ifdef U64
*(U64*)c = 0;
# if WORDS_BIGENDIAN
c += 4;
# endif
#endif
#ifdef __APPLE_QUARTZ__
c[3] = 255;
#endif
int parse = fl_parse_color((const char*)p, c[0], c[1], c[2]);
if (parse) {
#ifdef WIN32
used_colors[3*color_count] = c[0];
used_colors[3*color_count+1] = c[1];
used_colors[3*color_count+2] = c[2];
color_count++;
#endif
}
else {
// assume "None" or "#transparent" for any errors
// "bg" should be transparent...
Fl::get_color(bg, c[0], c[1], c[2]);
#ifdef __APPLE_QUARTZ__
c[3] = 0;
#endif
transparent_index = ind;
transparent_c = c;
}
}
}
d.data = data;
#ifdef WIN32
if (transparent_c) {
make_unused_color(transparent_c[0], transparent_c[1], transparent_c[2]);
}
else {
uchar r, g, b;
make_unused_color(r, g, b);
}
#endif
#ifdef __APPLE_QUARTZ__
if (fl_graphics_driver->class_name() == Fl_Quartz_Graphics_Driver::class_id ) {
bool transparent = (transparent_index>=0);
transparent = true;
U32 *array = new U32[d.w * d.h], *q = array;
for (int Y = 0; Y < d.h; Y++) {
const uchar* p = data[Y];
if (chars_per_pixel <= 1) {
for (int X = 0; X < d.w; X++) {
*q++ = d.colors[*p++];
}
} else {
for (int X = 0; X < d.w; X++) {
U32* colors = (U32*)d.byte1[*p++];
*q++ = colors[*p++];
}
}
}
CGColorSpaceRef lut = CGColorSpaceCreateDeviceRGB();
CGDataProviderRef src = CGDataProviderCreateWithData( 0L, array, d.w * d.h * 4, 0L);
CGImageRef img = CGImageCreate(d.w, d.h, 8, 4*8, 4*d.w,
lut, transparent?kCGImageAlphaLast:kCGImageAlphaNoneSkipLast,
src, 0L, false, kCGRenderingIntentDefault);
CGColorSpaceRelease(lut);
CGDataProviderRelease(src);
CGRect rect = { { x, y} , { d.w, d.h } };
Fl_X::q_begin_image(rect, 0, 0, d.w, d.h);
CGContextDrawImage(fl_gc, rect, img);
Fl_X::q_end_image();
CGImageRelease(img);
delete[] array;
}
else {
#endif // __APPLE_QUARTZ__
// build the mask bitmap used by Fl_Pixmap:
if (fl_mask_bitmap && transparent_index >= 0) {
int W = (d.w+7)/8;
uchar* bitmap = new uchar[W * d.h];
*fl_mask_bitmap = bitmap;
for (int Y = 0; Y < d.h; Y++) {
const uchar* p = data[Y];
if (chars_per_pixel <= 1) {
int dw = d.w;
for (int X = 0; X < W; X++) {
uchar b = (dw-->0 && *p++ != transparent_index);
if (dw-->0 && *p++ != transparent_index) b |= 2;
if (dw-->0 && *p++ != transparent_index) b |= 4;
if (dw-->0 && *p++ != transparent_index) b |= 8;
if (dw-->0 && *p++ != transparent_index) b |= 16;
if (dw-->0 && *p++ != transparent_index) b |= 32;
if (dw-->0 && *p++ != transparent_index) b |= 64;
if (dw-->0 && *p++ != transparent_index) b |= 128;
*bitmap++ = b;
}
} else {
uchar b = 0, bit = 1;
for (int X = 0; X < d.w; X++) {
int ind = *p++;
ind = (ind<<8) | (*p++);
if (ind != transparent_index) b |= bit;
if (bit < 128) bit <<= 1;
else {
*bitmap++ = b;
b = 0;
bit = 1;
}
}
if (bit > 1) *bitmap++ = b;
}
}
}
fl_draw_image(chars_per_pixel==1 ? cb1 : cb2, &d, x, y, d.w, d.h, 4);
#ifdef __APPLE_QUARTZ__
}
#endif
if (chars_per_pixel > 1) for (int i = 0; i < 256; i++) delete[] d.byte1[i];
return 1;
}
//
// End of "$Id$".
//
|